一、数学悖论
1、一位美国数学家来到一个赌场,随便叫住两个赌客,要教给他们一种既简单又挣钱的赌法。方法是,两个人把身上的钱都掏出采,数一数,谁的钱少就可以赢得钱多的人的全部钱。赌徒甲想,如果我身上的钱比对方多,我就会输掉这些钱,但是,如果对方的钱比我多,我就会赢得多于我带的钱数的钱,所以我赢的肯定要比输的多。而我俩带的钱谁多谁少是随机的,可能性是一半对一半,因此这种赌法对我有利,值得一试。赌徒乙的想法与甲不谋而合。于是两个人都愉快地接受了这位数学家的建议。看来这真是一种生财有道的赌博。
2、拥有迷人内容的标题显然是荒谬可笑的!不过从下面的范例中你会看到,情况也许并非如此。我们从一个很容易被接受的等式开始:接下去的每一行都可以很容易地用初等代数来说明。代数方面没有任何错误。
3、本文来源:超级数学建模
4、现在的问题是你会怎么办?
5、有趣的就是理发师悖论。在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
6、其实谬误型悖论在某种程度上说是出现了错误。
7、这个关于时间旅行的悖论源自罗伯特·海因莱因的短篇小说,近来又出现在诺兰导演的《星际穿越》中。
8、数学悖论作为悖论的一种,主要发生在数学研究中。按照悖论的广义定义,所谓数学悖论,是指数学领域中既有数学规范中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规范中得到解决。数学中有许多著名的悖论,除前面提到的伽利略悖论、贝克莱悖论外,还有康托尔大基数悖论、布拉里——福蒂大序数悖论、理查德悖论、基础集合悖论、希帕索斯悖论等。数学史上的危机,指数学发展中危及整个理论体系的逻辑基础的根本矛盾。这种根本性矛盾能够暴露一定发展阶段上数学体系逻辑基础的局限性,促使人们克服这种局限性,从而促使数学的大发展。
9、我们欠孩子真正的数学阅读(附推荐目录)
10、克服分心与压力,才能获得长时间的平静与专注;改掉不健康的焦虑习惯,才能真正使内心强大。
11、哪里可能出错了呢?再一次,当我们违反一条数学规则时,就出现了一个“谬误”这里我们定义a和b中至少有一个是非负数时,才成立。这就意味着按照进行计算的人错了。
12、这个悖论被抽象出来,就是集合论中的“自指悖论”。R是所有不包含自身的集合的集合,那么R是否包含R呢?如果包含,则应该不包含;如果不包含,则应该包含。那么到底哪里出了问题呢?是我们的逻辑学?还是集合论本身?
13、阿溪里斯是古希腊传说中善走的神,现在让他和乌龟赛跑。假定他的速度为乌龟的10倍。乌龟先出发,走了公里。阿溪里斯开始追赶它,当阿溪里斯走完这公里时,乌龟又向前走了公里;阿溪里斯再走完这公里时,乌龟又向前走了公里……阿溪里斯的速度再快,走过一段路总得花一段时间,乌龟速度再慢,在这一段时间里也总要再向前走一段路程。这样说来,阿溪里斯是永远追不上乌龟了。同学们,你认为这种说法正确吗?你能说出其中的理由吗?
14、现在,将(1)式两边乘以我们就得到:
15、{…}是自然数集:
16、如果这还不够让你心烦,那么请考虑下面这个论证过程:
17、真实性悖论是一个无矛盾的命题。其产生的结果看起来很荒谬,但事实证明是正确的。其推理过程和其结果都没有问题,不是真正的悖论。如,希尔伯特旅馆悖论。
18、同济版高等数学(上)视频汇总
19、公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。
20、同济版高等数学(下)视频汇总
二、数学悖论大全
1、有人会讲,芝诺悖论和量子力学的关系啊,芝诺悖论和时空是否可以无限细分的关系啊。简单地反驳,如果追不上乌龟的大兄弟和飞不动的箭都存在于一个空间可以无限细分的理想空间里呢?
2、没想到三年之后,英国数学家、逻辑学家和哲学家——罗素,提出著名的理发师悖论,震惊了整个数学界:
3、答案千奇百怪。直接的是无限个,也有数学家认为,每个球都会被取出来。逻辑学家詹姆斯·亨勒(JamesM.Henle)和托马斯·泰马祖科(ThomasTymoczko)提出花瓶里的球终可以是任意数目,甚至有具体的构造方法。
4、概述:如果忒修斯的船上的木头被逐渐替换,直到所有的木头都不是原来的木头,这艘船还是原来的那艘船吗?
5、问题在于,你往内表面灌油漆的速度比刷外表面灌得快。往外表面刷的时候,不管你刷多少,因为没有厚度,所以油漆的体积为0,就是说,你以0速度消耗油漆体积,以均匀速度刷表面面积。往里面灌的时候,你在有限时间内灌满有限体积,所以消耗速度是一个有限正数,所以你以正速度消耗体积,以无穷大速度刷面积。所以,你可以在外表面的附近再加一个表面,使得新的表面和外表面之间有一定的缝隙,这样就有非0的体积,而且,调整远处缝隙的大小,这个体积可以任意的小,这样往里灌油漆,也可以在有限时间灌满,从而刷上外表面。
6、芝诺又一著名悖论,他认为时间的单位是瞬间。事实上,运动不会发生在任何特定时刻,并不意味着运动不会发生。战国时期的诡辩学代表人物惠施也曾说:“飞鸟之影,未尝动也。”
7、本文只想谈点轻松的话题。其实,许多数学悖论是饶有趣味的,它不仅可以令你大开眼界,还可以从中享受到无尽的乐趣。面对形形色色富于思考性、趣味性、迷惑性的问题,你必须作一点智力准备,否则可能就会在这悖论迷宫中转不出来了。看看下面的几个小故事,你就会相信此话不假。
8、在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”意思是:如果你认为“所有的话都是错的”这句话是对的,那就错了,因为这句话本身就是对的。
9、提示:点击上方"52数学网"↑快速关注!
10、概述:100克土豆含有99%的水,如果它被榨出了2%,还剩98%的水分,它将只重50克。即100克的土豆含有1克干物质(drymaterial),当还剩98%的水分时,1克将对应2%的含量,因此含98%水分的土豆重50克。
11、脑洞:小学奥林匹克暗袋摸球概率题版。
12、“我正在说的这句话是谎话”
13、三门问题,MontyHall问题
14、数学悖论:http://baike.baidu.com/view/293html?wtp=tt
15、第一个故事发生在一位调查员身上。这位调查员受托去A、B、C三所中学调查学生订阅《中学生数学》的情况,他很快统计出,A校男生订阅的比例比女生订阅的比例要大些,对B校和C校的调查也得出同样的结果。于是他拟写了一个简要报道,称由抽取的三所学校的调查数据看,中学生中男生订阅《中学生数学》的比例比女生大。后来,他又把三所学校的学生合起来作了一遍统计复核,匪夷所思的事情发生了,这时他得出的统计结果令他大吃一惊,原来订阅《中学生数学》的所有学生中,女生的比例比男生要大些,怎么会是这样呢?这就象在玩一个魔术,少的变多了,多的变少了。你能帮他找找原因吗?
16、如果我们仔细分析这段话,会发现存在自相矛盾,使得开会无法进行,你能看出问题所在吗?
17、你能说出为什么这场考试无法进行吗?
18、大家听了直发笑。有人问他:“理发师先生,您给不给自己刮胡子呢?”
19、在某个城市中有一位理发师,他的广告词:"本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!"来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于"不给自己刮脸的人",他就要给自己刮脸;而如果他给自己刮脸呢?他又属于"给自己刮脸的人",他就不该给自己刮脸。
20、如果不考虑收敛级数的概念,我们就会陷入以下困境。
三、十大数学悖论
1、试试背圆周率,听听弹奏圆周率
2、上面的这种说法是不正确的。但要解释清楚,却又觉得很难。这种看似这样,其实那样的数学问题(命题),数学史把它们称作“数学悖论”。什么是悖论?从数学理论的角度讲,即从一些貌似正确或看来可接受的约定出发,经过简明正确的推理,却得到自相矛盾的结论,这样的议论就称为悖论。悖论的起源几乎与数学史同步,却导致三次“数学基础危机”,使人们对数学产生怀疑,同时也从侧面促进了数学的发展。
3、脑洞:n只青蛙n张嘴,2n只眼睛4n条腿,扑通n声跳下水……你想起数列是个什么鬼了吗?
4、大家都知道除以0是被禁止的。事实上,在数学戒律的清单上,这一点高居榜首。不过,为什么不允许除以0呢?数学王国里的万事万物都整齐地各就各位,我们对数学中的秩序和美丽引以为傲。当某件可能破坏这种秩序的事情出现时,我们就直接作出规定以适应我们的需要。这恰恰就是面对除以0的情况时发生的事情。通过解释为什么要提出这些“规则”,大家会对于数学的本质产生一种更加深入的洞察。因此,让我们来为这条戒律赋予某种意义。
5、在古希腊时代,克里特岛的哲学家埃庇米尼得斯(约公元前6世纪)发现的“说谎者悖论”可以算作人们早发现的悖论。公元前4世纪的欧布里德将其修改为“强化了的说谎者悖论”。在此基础上,人们构造了一个与之等价的“永恒的说谎者悖论”。埃利亚学派的代表人物芝诺(约490B.C.—430B.C.)提出的有关运动的四个悖论(二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论)尤为著名,至今仍余波未息。
6、你所有的感受都是有道理的。——《原生家庭——如何修补自己的性格缺陷》
7、伽利略悖论。伽利略认为,正整数中,有些是偶数,有些不是。因此,他就猜测,正整数一定比偶数多。但是每一个正整数乘以2都能得到一个偶数,而每一个偶数除以2都能得到一个正整数,那么从无限的数看来,偶数和正整数都是一一对应的,那么,这就说明,在无穷大的世界里,部分可能等于全体。
8、有利于提高学生对现代数学所具有的美妙、多样,甚至幽默性质的鉴赏力。
9、到了1734年,英国大主教贝克莱驳斥微积分理论(本质是反科学),指出了著名的贝克莱悖论,该悖论把当时微积分中大缺陷暴露了出来:
10、这位母亲细想片刻说到:我想你会吃掉我的孩子!
11、实质条件的示意图如下:
12、{…}是自然数平方的数集。
13、例如:公理化集合论的建立,成功解决了罗素悖论,从而比较圆满地解决了第三次数学危机。罗素悖论使得数学基础问题第一次以迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。
14、这个数学悖论也是罗素提出来的。1902年,罗素从已被人们公认为数学基础理论的集合论中,按照数学家们通用的逻辑方法,“严格”地构造出这个数学悖论。把它通俗化就是理发师悖论。
15、在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论。
16、像理发师这样在逻辑上自相矛盾的言论,叫做“悖论”。罗素编的这则笑话,就是数学史上著名的“理发师悖论”。
17、冯·诺依曼解火车苍蝇题.彭翁成.个人博客.科学网.
18、概述:如果你乘坐哆啦A梦的时光机,回到你爷爷奶奶相遇之前,杀死你的爷爷会发生什么?如果杀死了你的爷爷,那么你就从未诞生;如果你从未诞生,如何回到以前杀死你的爷爷?
19、19世纪末,第二次数学危机在集合论的完善下得到解决,数学家们“欢欣起舞”。在1900年国际数学家大会上,法国大数学家庞加莱甚至宣称:现在的数学,已经达到了严密的程度!
20、还有大家十分熟悉的成语故事“自相矛盾”不也是一个道理吗?
四、数学悖论
1、脑洞:无限二分16寸芝士乳酪蛋糕却不能吃的快感,你值得拥有。
2、这句话,乙同学能回答出来吗?
3、这种事看来十分荒唐,而事实上它是客观存在的。这种现象科学家称之为“悖论”。今天,虽然数学家还不能合理地解释悖论,但正是在这种解释的努力中,数学家一系列的发现,导致了大量新学科的建立,推动了数学科学的发展。悖论还反映了严密数学科学并不是铁板一块,它的概念、原理之中也存在许多矛盾。数学就是在解决矛盾中逐渐发展完善起来的。悖论的存在,还告诉人们,在学习与研究数学时,必须牢记古希腊数学家的名言:要怀疑一切,只有这样才能有所发现。
4、悖论是一种认识矛盾,它既包括逻辑矛盾、语义矛盾,也包括思想方法上的矛盾。数学悖论作为悖论的一种,主要发生在数学研究中。按照悖论的广义定义,所有数学规范中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规范中得到解决。